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ABSTRACT: Background: NKX2-71-related disorders
result from heterozygous variants in NKX2-1, a gene crucial
for brain, lung, and thyroid development. Although move-
ment disorders, hypothyroidism, and neonatal respiratory
distress are recognized, the full phenotype and genotype-
phenotype relationships remain incompletely defined.
Objectives: To delineate neurological, respiratory, and
endocrine features across ages, characterize movement
disorder trajectories — particularly chorea — and explore
genotype—phenotype associations with clinical relevance.
Methods: We conducted a multicenter, cross-sectional
study recruiting participants through referral clinicians
and European networks. Standardized clinical and
genetic data were captured in an electronic database
and analyzed with descriptive and inferential statistics.
Results: Sixty-eight individuals (37 female; median age
16 years, range 2-60 years) were included. Motor delay
was the commonest presenting feature (~60%); neonatal
respiratory distress syndrome occurred in one-third of
cases. The brain-lung-thyroid triad was present in
almost half. Chorea affected over 90% and began in
early childhood; it was more frequent with single nucleo-
tide variants than with deletions. Deletions are

o

~

associated with better gross motor function. Frameshift
or nonsense variants showed greater respiratory involve-
ment, and variants in the exon-3 homeobox region were
associated with age-related reduction of chorea. Neona-
tal respiratory distress predicted later respiratory symp-
toms. Greater abnormal involuntary movement severity
correlated with poorer manual and gross motor function.
Hypotonia and untreated hypothyroidism are associated
with more severe chorea. Psychiatric comorbidity occurred
in over one-third of cases, mainly attention-deficit/
hyperactivity symptoms.

Conclusions: This largest cohort to date shows early neu-
rological onset, genotype-specific outcomes, and frequent
psychiatric comorbidity in NKX2-1-related disorders, refin-
ing clinical expectations and supporting genotype-informed
diagnosis, counseling, and management. © 2026 Interna-
tional Parkinson and Movement Disorder Society.

Key Words: chorea; benign hereditary chorea; brain-
lung-thyroid syndrome; hypothyroidism; neonatal respira-
tory distress syndrome; neurodevelopmental delay;
NKX2-1; TTF-1
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NKX2-1-related disorders (NKX2-1-RD), also known as
brain-lung-thyroid syndrome or benign hereditary chorea,
represent a clinically and genetically diverse group of condi-
tions caused predominantly by pathogenic single nucleotide
variants (SNVs) in the NKX2-1 gene, located on chromo-
some 14q13."% The gene encodes the thyroid transcription
factor-1 (TTF-1), a homeodomain-containing transcription
factor essential for embryonic development and postnatal
function of the brain, lungs, and thyroid gland. NKX2-1-
RD typically exhibits an autosomal dominant inheritance,
although de novo cases have also been reported.

The classic presentation of NKX2-1-RD is character-
ized by a triad of features: movement disorders (most
commonly chorea, though dystonia, myoclonus, and
ataxia may also occur), thyroid dysfunction (ranging
from congenital hypothyroidism to compensated
forms), and pulmonary involvement, often manifesting
as neonatal respiratory distress syndrome (NRDS).!
The phenotypic spectrum may sometimes include one
or two components of the triad or extend beyond it to
additional neurological, respiratory, and endocrine
manifestations. There is also emerging evidence for
increased predisposition to thyroid and lung malignan-
cies and for psychiatric comorbidities.>*

The NKX2-1 protein regulates genes essential for thyroid
hormone synthesis (eg, thyroglobulin, thyroperoxidase,
and thyrotropin receptor),”” supports differentiation of
alveolar type II cells and surfactant production in the
lungs,*'" and contributes to the development of the basal

ganglia, hypothalamus, and other structures involved in
motor control and neuroendocrine regulation.” Disrup-
tion of these functions results in multisystem disease with
variable expressivity and penetrance, even among individ-
uals with identical variants.

Despite the role of NKX2-1 in these disorders being
established over two decades ago, important gaps remain
in understanding the complete clinical spectrum, natural
history, and genotype—phenotype correlations.'*'* Current
knowledge is largely derived from case reports and small
cohorts, limiting insight into phenotypic diversity."'*3°
For example, while chorea is a hallmark neurological fea-
ture, its longitudinal course is poorly defined®'; the longest
reported follow-up spans 24.5 years and includes 28 indi-
viduals.?” The frequency and severity of respiratory and
thyroid manifestations also vary, and correlations with
genotype are only beginning to emerge.*>>* Recent studies
have expanded the genetic spectrum to include deletions,
mobile element insertions, changes in conserved non-
coding regions, and variants in regulatory genes (eg,
PAX9, MBIP) that may influence phenotype.>*>>

This heterogeneity complicates diagnosis and manage-
ment. Symptom overlap with other neurodevelopmental,
movement, and endocrine disorders often delays diagno-
sis. In addition, the unpredictable evolution of symptoms
makes prognosis and long-term treatment planning
challenging.

To address these gaps, this study analyzed the largest
multicenter cohort of genetically confirmed NKX2-1-RD
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to date. Through detailed clinical, genetic, and neuroim-
aging assessments, we aimed to define the full range of
neurological, respiratory, and endocrine manifestations
across ages, characterize the progression of movement
disorders - particularly chorea - and identify
genotype—phenotype associations that can guide diag-
nosis, prognostication, and targeted management
strategies.

Patients and Methods
Study Design and Population

This multicenter, cross-sectional, observational study
included individuals with NKX2-1-RD and a confirmed
genetic diagnosis. Participants were recruited through
referral physicians and international outreach via
several platforms, including the European Reference
Network for Rare Neurological Diseases (ERN-RND),
the European Reference Network for Rare Malformation
Syndromes, Intellectual and Other Neurodevelopmental
Disorders (ERN-ITHACA), the Spanish Society of Pediat-
ric Neurology (SENEP), the Pediatric Movement Disor-
ders Special Interest Group (SIG) of the International
Parkinson and Movement Disorder Society (MDS), and
the Facebook NKX2-1 patient group. Additional recruit-
ment was achieved through workshops, scientific con-
gresses, and direct referrals from colleagues.

All study data were collected and managed in a RED-
Cap (Research Electronic Data Capture) database for
the International NKX2-1 Registry,*®>” hosted at Hos-
pital Sant Joan de Déu, Barcelona, Spain, between
October 2023 and October 2024. In total, 40 specialists
from 29 centers across 17 countries contributed to the
registry. Clinical data were obtained from medical
records and de-identified to ensure confidentiality.

Clinical and ancillary data were collected using a stan-
dardized registry protocol and analyzed following
predefined criteria. Core variables included demographic
information, perinatal history, neurological findings, sys-
temic features, and genetic results. Movement-disorder
phenomenology was assessed by subspecialists at each site,
and severity was graded using the Abnormal Involuntary
Movement Scale (AIMS) when available. Brain magnetic
resonance imaging (MRI) and endocrine assessments were
reviewed locally. Genetic testing followed site-specific pro-
tocols and American College of Medical Genetics and
Genomics (ACMG)/Association for Molecular Pathology
(AMP) classification guidelines (NKX2-1, transcript
NM_001079668.3). Statistical analyses included descrip-
tive, univariate, and multivariate models using appropriate
nonparametric tests (Spearman, Mann-Whitney, Kruskal-
Wallis, Chi-squared/Fisher) with P < 0.05 considered
significant.

A detailed description of data collection procedures,
operational definitions (eg, gait abnormalities, cognitive

REGISTRY OF
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impairment), and statistical methods is provided in Sup-
plementary Material, Methods in Data S1.

Results

Demographic and Neurological Features

Sixty-eight individuals with NKX2-1-RD were
included; 37 (54.4%) were female. Median age at last
follow-up was 16 years (range 2-60 years) (Fig. 1A).
Most were referred by neurologists (86.8%). Eighty-five
percent were followed in Europe (notably France and
Spain) and 15% were in the Americas. One neonatal
death due to NRDS occurred. Fourteen cases had been
previously published.’»2%%8:2%-38-43

Median age at first symptom was within the first year
(median 0.87 years, interquartile range [IQR] 0-
8 years) (Fig. 1A). Neurological symptoms pre-
dominated at onset: motor delay was most frequent
(41.8%), followed by global developmental delay and
hypotonia; chorea or gait problems were initial in a
minority. Respiratory onset occurred in 34.3% (mostly
NRDS) and endocrine onset was rare. Only half
(50.8%) fulfilled the full brain-lung-thyroid triad; 40%
had dual-system involvement (most often brain—thy-
roid), and 9.2% showed isolated brain involvement
(Fig. 1B). A phenotypic heatmap for age and sex is
shown in Figure 2.

Perinatal complications were common. NRDS was
reported in 35.5% (median onset 4.5 hours after birth).
About half of those with NRDS required invasive
ventilation; others received noninvasive support or
oxygen. Additional neonatal issues (25.81%) included
hyperbilirubinemia, non-reassuring fetal status (eg,
abnormal fetal heart rate patterns), and late prematu-
rity. Among term infants, median birthweight was
3135 g; newborn screening was abnormal in 22.7%,
all subsequently diagnosed with hypothyroidism
(Supplementary Table S1).

Neurodevelopmental delay (NDD) was present in
94% (64/68): mild 62.1%, moderate 31.0%, and
severe 6.9% (when graded). Motor delay was nearly
universal (91.2%), whereas speech (36.8%), other
cognitive (19.1%), and social (8.8%) impairments
were less frequent (Fig. 1C,D). Independent sitting
occurred at 12.4 months on average; autonomous
gait at 29.5 months. Only 10.7% walked before
19 months, and later gait onset correlated with
greater NDD severity (Spearman r = 0.524, P < 0.001)
(Fig. 3A).

Chorea affected 92.7% (Supplementary Table S2).
It began early (median 2.00 years; 93% before age
6 years). Chorea was predominantly generalized
(80.6%). Among patients with non-generalized chorea,
the most frequently affected body regions were the
arms (66.7%), head (22.2%), and legs (11.1%). Chorea
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FIG. 1. Clinical characterization of individuals with NKX2-17-related disorders (NKX2-71-RD). (A) Violin plot depicting current age (in years), age at
NKX2-1-RD diagnosis, and age at onset of first symptoms. (B) Violin plot showing the age (in years) at onset of brain, lung, and/or thyroid symptoms.
(C) Violin plot illustrating the age (in years) at attainment of sitting, gait, and language milestones. (D) Column chart showing the percentage of individ-
uals with NKX2-1-RD presenting motor, cognitive, language, and social developmental delays. [Color figure can be viewed at wileyonlinelibrary.com]

was more frequent with NKX2-1 SNVs than with dele-
tions (96.6% vs. 75%, Fisher’s exact test P = 0.067).
Females showed earlier onset when univariate Mann—
Whitney U test analysis was performed, but this infor-
mation was not retained after adjustment in the multi-
variable linear regression.

Evolution of chorea could be classified in those with
>2 documented assessments; given the heterogeneous
and non-uniform observation intervals across patients,
results are reported as categorical evolution (improved/
stable/worsened) rather than as time-to-change. Over
time, chorea stabilized in 57.1%, improved in 35.7%,
and worsened in 7.1%. Females appeared to have bet-
ter outcomes in unadjusted analysis (Fisher’s exact test
P =0.035) (Fig. 3C), but this did not persist in multi-
variable logistic regression controlled by possible con-
founders. Two clinical factors associated with a worse
chorea course were hypotonia (Fisher’s exact test
P =0.002) and untreated hypothyroidism (Fisher’s exact
test P = 0.032) (Fig. 3D,E). By genotype, homeobox exon-3
SNV tended to remain stable, whereas non-homeobox SNV
more often improved (Fisher’s exact test P = 0.039)
(Fig. 3F). On the AIMS rating scale (n = 52), 25%
had minimal, 57.7% mild, and 17.3% moderate
chorea.

Other motor features were frequent (82.4%): hypo-
tonia 57.4%, dystonia 46.3%, gait abnormalities

34.3%, myoclonus 32.8%, dysarthria 14.9%, and
tremor 9.0%. Frequent falls were reported in 61% of
those queried. Myoclonus was associated with dysto-
nia  (51.6% vs. 17.1%, x*>=8.790, df=2,
P =0.007) and with gait abnormalities/dysarthria
(70% vs. 28.6%, x*=7.299, df =2, P =0.026).
Myoclonus was uncommon before the second decade
but present in ~49% thereafter (y* = 6.271, df = 2,
P < 0.05) (Fig. 3B). Intellectual disability was docu-
mented in 11.5%; most others were in the
borderline-mild range.

Functional scales showed mild impairment overall
(Gross Motor Function Classification System [GMFCS]
[-IT in 95%; Manual Ability Classification System
[MACS] I-II in 88%). Deletions were uniformly associ-
ated with better gross motor function (GMFCS I) than
SNV (Fisher’s exact test P = 0.045). Males had worse
manual ability (higher MACS scores) than females
(Fisher’s exact test P = 0.047).

Systemic Features

Respiratory symptoms occurred in 57.6%; recur-
rent wheezing and bronchospasm consistent with
reactive airway disease were most common (42.9%).
NRDS predicted later respiratory disease (87%
vs. 45%, y*=13.816, df=2, P =0.001). The
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FIG. 3. Clinical associations in individuals with NKX2-17-related disorders (NKX2-7-RD), focusing on neurodevelopmental delay (NDD) and chorea.
(A) Age at gait onset by NDD severity. Boxplot illustrating gait onset age (in months) in individuals with mild, moderate, and severe NDD. Median, inter-
quartile range, and outliers are shown, indicating a significant correlation between delayed gait onset and NDD severity. (B) Distribution of NDD severity
in individuals with and without myoclonus. Bar chart showing the number of cases with mild, moderate, or severe NDD, stratified by presence (Yes) or
absence (No) of myoclonus. A significant difference in NDD severity was observed between groups. (C) Chorea evolution by sex. Boxplot showing age
at chorea onset (months) by sex, with a trend toward earlier onset in females that was not significant in multivariable models. (D) Chorea evolution by
presence of hypotonia. Stacked bar chart comparing outcomes of chorea (improved, stabilized, worsened) in individuals with and without hypotonia. A
significant difference was observed. (E) Chorea evolution by presence of treated hypothyroidism. Stacked bar chart showing chorea evolution in indi-
viduals with and without treated hypothyroidism. A significant difference was observed. (F) Chorea evolution by location of NKX2-1 single nucleotide
variants (SNV). Stacked bar chart comparing chorea evolution across individuals with variants in different gene regions. A significant difference was
observed. Statistical significance: *P < 0.05, **P < 0.01, **P < 0.001.

average age at the onset of recurrent wheezing and
bronchospasm consistent with reactive airway disease
was ~1.2 years. Recurrent infections were reported
in seven individuals; interstitial lung disease in two;
and one adult had unclassifiable pulmonary fibrosis.
Only about one-fifth underwent spirometry or chest
computed tomography; diffusion capacity was rarely
assessed. Treatments included inhaled steroids, bron-
chodilators, and azithromycin. Frameshift/nonsense
SNVs were associated with higher respiratory
involvement than other SNVs (y* = 8.270, df =2,
P =0.016).

Hypothyroidism was highly prevalent (82%; median
diagnosis age was 1.54 years, nearly half in infancy).
Median thyroid-stimulating hormone (TSH) at diagno-
sis was elevated, and median free thyroxine (T4) was
low-normal. Thyroid ultrasound (available in half the
cases) showed congenital hypoplasia in about one-third.
Most  hypothyroid individuals (85%) received
levothyroxine, with heterogeneous dosing; precise data
distinguishing congenital versus compensated cases
were incomplete.

Beyond the triad, 19.7% had other endocrine issues:
growth hormone deficiency (9.1%), hypogonadotropic

FIG. 2. Phenotypic heatmap of individuals with NKX2-7-related disorders (NKX2-1-RD). The heatmap illustrates the presence or absence of the classi-
cal brain-lung-thyroid triad, together with various neurological, respiratory, and endocrinological symptoms, categorized by age and sex. Red indicates
absence, blue indicates presence, and white represents missing data. NDD, neurodevelopmental delay; ID, intellectual disability; NRDS, neonatal respi-
ratory distress syndrome; ADHD, attention-deficit hyperactivity disorder; F, female; M, male. [Color figure can be viewed at wileyonlinelibrary.com]
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[ INTERNATIONAL
hypogonadism (4.6%), and isolated cases of hypopituita-
rism or early puberty. Anthropometrics were generally
within reference ranges, and thyroid dysfunction did not
associate with failure to thrive or short stature.

Psychiatric comorbidity was common (over one-
third). Attention-deficit/hyperactivity symptoms were
most frequent, followed by anxiety and depression.
Myoclonus was significantly associated with anxiety
and depression (x*=7.967, df=2 P<0.01 and
x> =12.776, df =2, P < 0.01, respectively). No cases
of autism spectrum disorder or obsessive—compulsive
disorder were recorded. Treatments included methyl-
phenidate (often continued at the last follow-up), gua-
nfacine, or atomoxetine in isolated cases, and selective
serotonin reuptake inhibitors or antipsychotics when
indicated.

About 31% reported additional non-triad features
(eg, fatigue, urinary incontinence, joint hyperlaxity,
mild humoral immunodeficiency); oncological processes
were not observed. Review of 13 facial photographs
did not reveal a consistent dysmorphic pattern.

Genetic Diagnosis and Neuroimaging

Median age at genetic diagnosis was 5 years. Testing
modalities included exome sequencing (clinical or whole;
79%), microarray-based comparative genomic hybridiza-
tion (8%), whole-genome sequencing (3%), and others.
Most individuals (83.8%) harbored NKX2-1 SNV; the
remainder had deletions or regulatory-region disruptions
(eg, MBIP, PAX9). Among SNV, nonsense (40.4%) and
frameshift (28.1%) were most frequent, followed by splic-
ing (15.8%) and missense (17.8%). SNVs are distributed
across exon 2, exon 3, and splice regions; all missense
variants are clustered within the homeobox domain. Most
nonsense variants also lay within the homeobox; only one
frameshift was located there (distal). Two related individ-
uals had an Alu retrotransposition in exon 3. Eight indi-
viduals (11.8%) had deletions (two megadeletions and six
microdeletions); five encompassed NKX2-1 with other
genes, and three spared NKX2-1 but included regulatory
partners (MBIP in two and PAX9 in one). One individual
had a translocation involving the NKX2-1 region
(Supplementary Fig. S1, Table S3).

According to ACMG, 57.8% of SNVs/copy number
variants (CNVs) were pathogenic, 40.6% likely
pathogenic, and 1.6% variant of unknown significance
(VOUS). One case (I7) harbored a heterozygous 14q13.3
microdeletion (arr[GRCh37] 14q13.3(36,722,498-
36,790,795)x1; 68.3 kb) encompassing MBIP. The clini-
cal presentation was concordant with NKX2-1-RD.
According to the ClinGen CNV rubric (evidence codes
1A, 3A, 4 N), this CNV remains classified as a VOUS
trending toward likely pathogenic at the time of
resubmission. Approximately half of the variants were
de novo; among inherited variants with known parents,

REGISTRY OF

NKX2-1-RELATED DISORDERS
maternal transmission predominated. Seven multiplex
families are represented, though parental data were
incomplete in most, limiting analyses of penetrance and
intrafamilial variability.

Brain MRI (performed in 80.6%) was normal in
67.9%. Reported abnormalities included corpus
callosum dysgenesis, delayed myelination, and cystic
lesions (7.6%), such as Rathke cleft cysts and an arach-
noid cyst. Other findings were empty sella, Chiari I
malformation, and non-specific white matter changes.

Treatment and Management

Movement disorder-directed therapies were used in
35/63 (55.6%). The most frequently prescribed agents
were tetrabenazine (54.3% of treated patients), levo-
dopa (45.7%), and methylphenidate (22.9%).
Tetrabenazine was initiated at a median age of
6.5 years and was often discontinued due to limited
benefit or adverse effects. Levodopa and methylpheni-
date provided moderate benefit in a subset of patients.
At the last follow-up, approximately half of the treated
individuals remained on monotherapy. One patient
with dystonia underwent globus pallidus internus (GPi)
deep brain stimulation with a favorable response (I17).
Details are provided in Supplementary Table S2 and
Figure 4.

Care was multidisciplinary (neurology, pulmonology,
and endocrinology), with periodic assessment of motor
function, respiratory status, and thyroid hormones,
alongside neurodevelopmental and psychiatric monitor-
ing (Supplementary Table S4).

A more detailed description of the results can be
found in the Supplementary Material in Data S1.

Discussion

Our findings broaden the clinical and genetic under-
standing of NKX2-1-RD and challenge reliance on the
classical brain-lung—thyroid triad for diagnosis. Novel
contributions include the delineation of early motor
delay as the most typical presenting sign, genotype—
phenotype associations that inform motor and respiratory
outcomes, and the identification of NRDS as a predictor
of later respiratory morbidity. Together, these insights
refine prognosis and support a multidisciplinary care
model.

Motor delay within the first year was frequent and
often preceded other manifestations, occurring indepen-
dently of global neurodevelopmental delay.'*’ Although
most individuals had some neurodevelopmental difficulty,
cognitive and social deficits were less prominent than
motor impairment. The combination of early motor delay
with hypothyroidism, early pulmonary disease, or hypoto-
nia should heighten suspicion for NKX2-1-RD.
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FIG. 4. Sankey diagram showing the different treatments received for chorea in individuals with NKX2-1-related disorders (NKX2-1-RD). MFD, methyl-
phenidate; CBZ, carbamazepine; TBZ, tetrabenazine; CZP, clonazepam; VPA, valproate; TRZ, trazodone; HAL, haloperidol; PRG, pregabalin; AR,
aripiprazole; OLZ, olanzapine; LDX, lisdexanfetamine; THP, trihexyphenidyl; NA, Not available; AMT, amantadine; LT4, levothyroxine. [Color figure can

be viewed at wileyonlinelibrary.com]

Chorea affected the vast majority of patients and usu-
ally began in early childhood, then stabilized or
improved in most cases — distinct from the progressive
course typical of metabolic or neurodegenerative cho-
rea. Complete resolution was not observed here,
although Grass et al. reported it in a subset.”’ The
observed stabilization or improvement from childhood
onward likely reflects natural history in a non-
degenerative disorder, although treatment effects (eg,
tetrabenazine, levodopa, or thyroid replacement) may
modulate the clinical course in individual cases; our
registry was not designed to isolate causal treatment
effects.

Importantly, improvement in chorea did not parallel
other triad features: hypothyroidism persisted and
required treatment, and respiratory disease could
remain stable or emerge later (eg, interstitial lung dis-
ease or asthma). The mechanism of chorea improve-
ment remains unclear; age-related increases in tone
within a non-degenerative motor system is a plausible
explanation. Although myoclonus was more frequent
after the second decade, we did not observe a statistical
association with chorea improvement.

Although all the individuals in this cohort had neuro-
logical symptoms, this finding should not be interpreted
as universal to NKX2-1-RD. Referral pathways mainly
involved pediatric neurologists, which likely biased

ascertainment toward individuals with neurological
presentations and may have missed those with isolated
respiratory or thyroid involvement.

NRDS occurred in about one-third of cases and
strongly predicted later respiratory symptoms, extending
prior observations.** A systematic review of 148 individ-
uals showed a respiratory spectrum from NRDS to
asthma and interstitial lung disease; nonsense NKX2-1
SNVs have even been linked to lung cancer.*® These fea-
tures are consistent with NKX2-1 haploinsufficiency
affecting surfactant biology, while the endocrine profile
underscores its role in thyroid development.” Treatments
ranged from oxygen and ventilation to transplantation,
and long-term outcomes were heterogeneous.*’

Hypothyroidism was highly prevalent and often diag-
nosed in infancy, reinforcing the need for early screening.
Individuals with mild or compensated hypothyroidism
who were not started on levothyroxine showed more
severe chorea compared with those receiving treatment or
without hypothyroidism, based on retrospective clinical
evaluations. This association should be interpreted with
caution, because thyroid status was not systematically
evaluated before and after treatment initiation, and treat-
ment decisions depended on local clinical judgement.
Although thyroid dysfunction in NKX2-1-RD is well
recognised,** our cohort revealed underuse of lev-
othyroxine, despite established benefits of early therapy.
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PRESENTING FEATURES

Motor delay + hypotonia
Early-onset chorea + other hyperkinetic movement disorders
Neonatal respiratory distress syndrome (NRDS) or recurrent bronchospasms
Congenital/early-onset hypothyroidism
School-age ADHD symptoms
Positive family history of similar features

INITIAL ASSESSMENT

Full neurological examination (describe movement disorders)
Neurodevelopmental history (milestones, regression)
Thyroid function: TSH + free T4 (+ thyroid antibodies).
Respiratory status (history, examination; spirometry if age-appropriate)

Proceed to genetic testing if any of:
>2 presenting features, or
1 presenting feature plus positive family history, or
Asymptomatic/adult with family history seeking counseling

GENETIC WORKUP

with CNV d

Primary test: Exo

If negative but clinical suspicion remains high: consider long-read/targeted
assays for regulatory/structural variants or mobile-element insertions

PROGNOSIS

Deletions

Frameshift/Nonsense SNVs

Exon 3 Homeobox region variants
Untreated hypothyroidism
Hypotonia

NRDS

Trend to better gross motor function
Greater respiratory involvement
Chorea tends to be more stable
Chorea tends to be more severe
Chorea tends to be more severe

Consider risk of later-onset
respiratory symptoms

MANAGEMENT

Neurology

chorea: individualized trials (e.g.,
methylphenidate, VMAT2 inhibitors,
levodopa trial when indicated);
refractory dystonia: consider GPi-DBS
in expert centers

Pulmonology

Close follow-up if NRDS history;
assess for asthmafinterstitial lung
disease

Functional therapy
PT/OT tailored to GMFCS/MACS
levels

Psychiatry
Screen/treat ADHD, anxiety,
depression

Endocrinology:

Lifelong thyroid screening; treat even
compensated hypothyroidism in
presence of movement-disorder
comorbidity

Oncology risk

A small increase in tumor risk has
been reported in NKX2-1-related
disorders. Provide age-appropriate
clinical surveillance (for example,
periodic physical examination and
prompt evaluation of new masses or
organ-specific symptoms). Routine
imaging screening is not currently
recommended; individualize follow-up
according to family history and
variant

Genetic counselling
Offer in adolescence/adulthood;
cascade testing when appropriate

FOLLOW-UP

Regular, lifelong multidisciplinary follow-up with predefined intervals

FIG. 5. Legend on next column.

REGISTRY OF NKX2-1-RELATED DISORDERS

This, together with inconsistent neonatal TSH screening
and diagnostic delays, argues for standardized endocrine
protocols. We recommend routine thyroid testing in chil-
dren with neurodevelopmental disorders and lifelong
monitoring in all individuals with NKX2-1-RD. Treat-
ment of compensated hypothyroidism should be consid-
ered carefully given its association with chorea severity,
acknowledging the need for confirmation in prospective
studies.

Additional motor features — hypotonia, dystonia, and
myoclonus — and their interactions (including links
between myoclonus, dystonia, and milder neu-
rodevelopmental delay) extend the phenotype beyond
chorea. We did not observe consistent dysmorphic fea-
tures, including in deletion cases, and no malignancies
occurred in this relatively young cohort.

Only about half fulfilled the full triad; 40% had dual-
system involvement — most often brain—thyroid — and
~9% presented with isolated brain disease. These data
reinforce variable expressivity in line with prior
reports.'*”*%* The predominance of neurological pre-
sentations likely reflects recruitment through neurology
and may underrepresent isolated pulmonary or thyroid
disease.

Individuals with SNVs were more likely to develop cho-
rea than those with deletions, while deletions — regardless
of size or inclusion of neighboring genes — were associated
with better gross motor function. Variants in the exon-3
homeobox domain were associated with more stable cho-
rea, whereas non-homeobox variants tended to improve.
Frameshift and nonsense variants correlated with
increased respiratory involvement, with a near-significant
trend for splicing variants. These associations build on
earlier work and provide practical guidance for prognosis
and follow-up.*

The stabilization or improvement of chorea distinguishes
NKX2-1-RD from progressive disorders such as DYT-
HPCA, CHOR/DYT-ADCYS, and GNAOT1-related-
disease.*”” Although there have been descriptions of
chorea evolving into myoclonus,”” our cross-sectional
design prevents us from drawing definitive conclusions
about longitudinal trajectories. Correlations between

FIG. 5. Practical diagnostic and management workflow for NKX2-1-
related disorders. Algorithm summarizing the clinical approach from ini-
tial presentation to genetic work-up, prognosis, and follow-up. Key rec-
ommendations include early recognition of motor delay or chorea with
neonatal respiratory distress or hypothyroidism, early exome/genome
sequencing, and regular multidisciplinary follow-up (neurology,
pulmonology, endocrinology, psychiatry, rehabilitation, and genetics).
NRDS, neonatal respiratory distress syndrome; ADHD, attention-deficit/
hyperactivity disorder; TSH, thyroid-stimulating hormone; T4, free thy-
roxine; CNV, copy number variant; SNV, single nucleotide variant;
VMAT2, vesicular monoamine transporter 2; GPi, globus pallidus inter-
nus; DBS, deep brain stimulation; PT, physiotherapy; OT, occupational
therapy; GMFCS, Gross Motor Function Classification System; MACS,
Manual Ability Classification System. [Color figure can be viewed at
wileyonlinelibrary.com]
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functional motor scales (higher AIMS with worse
MACS and GMFCS) and delayed gait with neu-
rodevelopmental severity are novel and suggest that
early motor milestones serve as prognostic markers.

We identified Alu retrotransposition in two related
individuals and deletions affecting regulatory genes
rather than NKX2-1 itself, expanding the spectrum
beyond prior reports and underscoring the value of
comprehensive genomic testing.’

Clinical Implications

NKX2-1-RD should be considered in neonates with
disproportionate NRDS and in infants with isolated
motor delay, particularly when hypotonia or early cho-
rea are present, even without overt thyroid disease
(Fig. 5). Early genetic testing should interrogate SNVs,
deletions, and, when the exome/genome is negative but
the phenotype is compelling, regulatory regions and
mobile-element insertions. Prognosis should incorporate
genotype and sex (eg, better gross motor outcomes with
deletions; worse manual ability in males). Differential
diagnosis includes NHLRC2, which can mimic the
respiratory and thyroid phenotype but typically pre-
sents with dystonia rather than chorea.’’ The limited
and variable response of chorea to medication argues
for individualized therapeutic trials, ideally stratified by
genotype and sex.

The genotype—phenotype patterns suggest that func-
tional domains of NKX2-1 differentially influence neu-
rodevelopment, motor control, and respiratory
regulation. The relatively milder motor phenotype in
deletions versus SNVs may reflect partial preservation
of regulatory networks, a hypothesis for future molecu-
lar work. Associations between myoclonus, dystonia,
and psychiatric comorbidities hint at broader circuit
dysfunction, potentially —across basal ganglia-
thalamo-cortical loops, consistent with contemporary
models linking movement disorders and psychiatry.’*

The cross-sectional design limits causal inference and
likely biased recruitment toward neurologically pre-
senting cases; improvement or stabilization was inferred
retrospectively from clinical documentation rather than
quantified through standardized longitudinal scales,
restricting precision in assessing temporal evolution.
Although this is the largest cohort to date, subgroup
analyses remain underpowered. Management varied
across centers, potentially affecting outcomes. The
median age at genetic diagnosis suggests a diagnostic
delay that may obscure early trajectories. Under-
representation of pulmonology expertise and interstitial
lung disease cases limits generalizability to those sub-
groups. Severity and longitudinal changes in chorea and
myoclonus were derived from retrospective expert clinical
documentation and AIMS ratings when available. Because

AIMS lacks validation in NKX2-1-RD and standardized
serial scales were inconsistently applied at fixed intervals,
measurement variability is possible, preventing time-
to-event analyses. Additionally, because the registry relied
on clinician notes rather than prospective standardized
assessments, the longitudinal evolution of chorea may be
subject to documentation bias.

Prospective, longitudinal cohorts with standardized
neurological, pulmonary, and endocrine assessments
are needed to validate predictors (eg, NRDS for later
pulmonary disease) and to define natural history.
Mechanistic studies contrasting homeobox versus non-
homeobox SNVs and assessing regulatory disruptions
may reveal therapeutic targets. Genotype- and sex-
stratified treatment studies, together with routine psy-
chiatric screening, should inform evidence-based care.

In summary, NKX2-1-RD is clinically heterogeneous,
but chorea, NRDS, and hypothyroidism remain defin-
ing features. Motor delay is a frequent early sign that
may presage chorea. By mapping genotype-specific out-
comes and early clinical predictors, this study offers a
framework for genotype-informed diagnosis, counseling
and management, reinforcing the need for coordinated
care across neurology, pulmonology, endocrinology, and
psychiatry. @
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