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Hospital-wide access to genomic data
advanced pediatric rare disease research
and clinical outcomes
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Boston Children’s Hospital has established a genomic sequencing and analysis research initiative to
improve clinical care for pediatric rare disease patients. Through the Children’s Rare Disease
Collaborative (CRDC), the hospital offers CLIA-grade exome and genome sequencing, along with
other sequencing types, to patients enrolled in specialized rare disease research studies. The data,
consented for broad research use, are harmonized and analyzed with CRDC-supported variant
interpretation tools. Since its launch, 66 investigators representing 26 divisions and 45 phenotype-
based cohorts have joined the CRDC. These studies enrolled 4653 families, with 35% of analyzed
cases having a finding either confirmed or under further investigation. This accessible and harmonized
genomics platform also supports additional institutional data collections, research and clinical, and
now encompasses 13,800+ patients and their families. This has fostered new research projects and
collaborations, increased genetic diagnoses and accelerated innovative research via integration of
genomics research with clinical care.

Theavailability andefficiencyof genomic sequencing in thediagnosis of rare
monogenic diseases has led to frequent use of genomics in research and
gradual adoption in clinical practice. Over the past decade, numerous large
rare disease sequencing research studies have characterized the burden of
Mendelian disease across various phenotypes1–4. The clinical impact of
timely genomic sequencing for pediatric patients has been well-established
in the critical care setting5–8. However, another advancement has been the
development of genomics-driven platforms that facilitate research-
informed healthcare for broader groups of patients9–14 in a variety of care
contexts. Critically, research-clinical integration for genomics includes
building infrastructure to consent for research sequencing, confirm selected
research findings and deliver clinically validated results directly to patients,
as well as a mechanism to conduct deeper ongoing analysis in a research
setting on non-diagnostic clinical cases. Establishment of a research-clinical
cycle leverages the power of research to improve clinical care by filling gaps

in diagnostics and accessibility while maintaining the highest standards for
clinical diagnosis.

Exome sequencing (ES) has had broad use in rare disease research
studies and is increasingly utilized in clinical care. However, genome
sequencing (GS) has become more common as the cost of sequencing has
decreased. GS has been shown to increase diagnostic yields up to 10%
through improved variant calling for small variants, copy number variants
(CNVs), andother structural variants (SVs) and the ability to interrogate the
non-coding space15–18 including in regions of known disease-associated
genes. In addition, other genomic technologies, such as long-read GS and
transcriptome sequencing, have beendeployed to resolve cases undiagnosed
by ES/GS19–22. However, these other technologies are still mostly limited to
research.

The Children’s Rare Disease Collaborative (CRDC) at Boston Chil-
dren’s Hospital (BCH) was launched in 2018 with the goal of integrating
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research and clinical genomic data into an accessible genomics platform to
drive pediatric precisionmedicine. Phase I, completed in 2019, included the
establishment of an infrastructure for consenting patients and their parents,
data sharing, and analysis of ES for 1046 affected individuals across 15
disease cohorts11.Here,wedescribe the results fromPhase II and thefirstfive
years overall of theCRDC.Having established a large cohort of patientswith
pediatric rare disease presentations ascertained by subspecialty experts, with
deep disease-specific phenotype information and genomic data, we
demonstrate the potential of an institutional research-clinical partnership in
facilitating new discoveries and advancing pediatric healthcare.

Results
Establishing a genomic sequencing ecosystem
As previously described, the CRDC was created in alignment with our
institutional goals as part of the BCH Research Strategic plan and as the
outcomeof a BlueRibbon committee commissioned in 201811. The goalwas
to establish a scalable, clinical-grade genomic sequencing platform that
advances rare disease research and improves clinical care. To this end, the
collaborative developed a variety of features and resources for research and
clinical communities across the institution (Fig. 1). These features include
integrating language for broad-use research and data sharing into consents,
extensivefinancial support for researchESandGS, centralizeddata access to
both research- and clinically-generated sequencing data, a comprehensive
and standardized analysis platform, amechanism to evaluate novelmethods
and analytics, and a network of investigators with diverse disease-specific
expertise. The establishment of these resources has enabled investigators at
all career levels to perform genomic research, promoted data sharing
internally and externally, propelled implementation of innovative analysis
and provided access to newpathways of diagnosis for individuals not able to
obtain clinical testing or that had received nondiagnostic results.

The CRDC began offering research genomic sequencing for selected
rare disease cohorts in late 2018; in the first year (Phase I), the collaborative
generated ESdata for 1046 affected individuals across 15 cohorts, developed
consent language for broad-use research and implemented a harmonized
data processing and standardized analysis platform11. Since then, additional
disease cohorts were selected for funding about once a year via a hospital-
wide call for applications. Cohorts were chosen based on potential for novel
discoveries and scientific innovation. Moreover, the selection criteria were
inclusive, with a goal to broaden the availability of genomic sequencing
across all the divisions and departments and investigators at all career levels.

As of early 2024, the CRDC included 45 disease cohorts led by 66 investi-
gators from26departments/programs (Table 1). These disease cohorts each
coveredat least 5 andup tohundreds of different genetic diseases, definedby
the Genetic and Rare Diseases Information Center (GARD,
rarediseases.info.nih.gov).

Since the launch of the collaborative, the process to onboard new
cohorts has been streamlined, particularly at the stage of Institutional
Review Board (IRB) review, which was 16% faster for the 15 most recent
consents that include standardized CRDC-specific language than the first
12. There have been many improvements in the process of enrolling indi-
viduals and collecting samples. Efforts to develop methods of remote con-
senting and sample collection accelerated during the COVID-19 pandemic
to mitigate pandemic-related restrictions on general on-site interactions
with patients and research participants. The ability to consent and enroll
remotely/electronically and to remotely collect buccal samples (ES only)
continues even as clinics and research are permitted to occur on-site.

Additionally, in Phase II, the CRDC began supporting GS, in addition
to ES, as a sequencing test. The original experimental design was to first
perform ES on the proband and available family members and then reflex
selected non-diagnostic cases to GS of the proband. However, in March
2022, GS began to be offered as a first-line test to all disease cohorts. Since
then, usage of GS has grown, currently accounting for 35% of tests ordered.
The majority of tests ordered continues to be ES, however, largely because
buccal swabs and thus remote sample collection have only recently been
accepted by GeneDx for GS. Overall, 70% of probands have only ES data
while 17% of probands have ES+GS data and 13% have GS as the primary
test (Table 1, Fig. 2A).

As of February 2024, 6308 rare disease patients and their families
(13,723 individuals) that consented to a research study have had ES (100x
average coverage) and/or GS (40× average coverage) performed via the
CRDC, with 4653 of those families (11,150 individuals across 41 disease
cohorts) consented for broad-use research purposes and data sharing (Fig.
3). These data have been harmonized in an institution-wide genomics
repository with genomic and phenotypic data collected from other research
projects and support sources. Additionally, a workflow was established
whereby data generated from clinically-ordered sequencing was returned
and harmonized in the repository, facilitating clinically-driven re-analysis
and reflex to a research study. The repository thus contains 5694 families
under a broad-use research consent, 4916 families under other research
consents, and 3266 clinically-sequenced families not currently involved in a

Fig. 1 | Key features of the CRDC. This chart displays the six key features of the CRDC across the top and how they contribute to its research (red) and clinical (blue) goals.
This figure was created in Microsoft PowerPoint.
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Table 1 | Overview of the disease cohorts involved in the CRDC

Department/
Division

Disease cohort Families with genomic
data and consent for
broad-use research

Median age of
patient at
enrollment
(years)a

Percent that
includes both
parents (trio
sequencing)a

Percent of
probands
with GSa

Average
number of
HPO
termsa,b

Overall number of
families with
research
genomic data

Neurology Unexplained
Epilepsies

941 9.4 66% 36% 51 1166

Cerebral Palsy and
Related Disorders

265 8.7 55% 13% 75 265

Hereditary Spastic
Paraplegia and
Movement Disorders

68 10.0 71% 93% 84 68

Brain Malformations 43 4.6 77% 33% 68 469

Cerebrovascular
Disorders

21 11.4 52% 0% 47 21

Agenesis of the
Corpus Callosum

0 - - - - 24

Genetics and
Genomics

Ultra-Rare Disease 425 7.4 69% 45% 73 1235

ADHD and Related
Disorders

339 10.3 72% 7% 46 339

Myopathies and
Dystrophies

57 10.6 83% 22% 64 456

Sudden Unexpected
Death in Childhood
(SUDP/SIDS)

26 0.6 50% 65% - 486

Cornelia de Lange
Syndrome andRelated
Disorders

7 10.5 43% 0% 103 7

Interstitial Cystitis 0 - - - - 354

Endocrinology Idiopathic Short
Stature

91 9.3 56% 2% 56 91

Connective Tissue
Disorders

45 15.6 31% 20% 85 45

Osteogenesis
Imperfecta

38 13.8 61% 0% 51 38

Disorders of Sex
Development and
Hypospadias

33 3.7 48% 3% 43 169

Precocious Puberty 28 9.5 25% 0% 43 28

Cancer and Blood
Disorders

Anemias and Iron
Disorders

26 8.4 58% 5% 29 332

Bone Marrow Failure
and Leukemia
Predisposition

20 3.7 65% 90% 70 282

SchwammanDiamond
Syndrome

3 - 33% 100% 91 3

Sickle Cell Disease 0 - - - - 974

Gastrointestinal Inflammatory Bowel
Disease

793 15.4 24% 37% 41 811

Congenital Diarrheas
and Enteropathies

94 6.6 22% 30% 57 106

Intestinal Failure due to
Malrotation and
Volvulus

13 6.3 62% 100% 40 13

Otorhinolaryngology Hearing Loss 451 7.2 53% 13% 43 451

Hearing Loss and
Cochlear Implants

62 2.4 3% 45% 41 62

Peripheral Vestibular
Disorders

59 13.4 44% 2% 62 59

Immunology Immunodeficiencies,
Autoimmunity and
Immune Dysregulation

291 10.8 44% 8% 67 372

Severe Pediatric
COVID-19 and MIS-C

132 8.3 1% 80% 55 150

Graves disease 31 17.5 0% 29% 64 31
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research study for a total of 31,168 individuals. All data were made available
to the appropriate researchers or clinicians in a standardized genomics
analysis platform with multiple tools for investigation including GeneDx’s
Discovery Platform, Illumina’s Emedgene, a local instance of the Broad
Institute’s Seqr platform23 and a gnomAD-like browser developed in-house,
BCH Aggregator.

The set of CRDC-sequenced data consented for broad research (4,653
families) is described in this report and comprises data from probands who
are mostly pediatric (86%with age ≤18 years at time of enrollment, median
age = 11 years) (Table 1, Fig. 2B) and are 53%male and 47% female.Where
possible, the biological parents of probands and other relevant family
members were also consented to the study. Forty-six percent of families
(2120) included both biological parents (trios) and another 28% included
one biological parent (duos) (Fig. 2C). Ten percent of families included at
least one other non-parental family member, 91% of whom included sib-
lings. Seventy-two percent of CRDC probands were self–reported asWhite,
non-Hispanic/non-Latine (compared to 67% of the overall hospital patient
population)24.

Phenotypic information is collected in a centralized repository for
studies involved in the CRDC via twomethods. The first is manual entry of
clinical information into disease-specific REDCap25,26 databases by indivi-
dual research teams. Each disease cohort had an average of 1–16 Human
PhenotypeOntology (HPO) terms per patient (Fig. 2D) andwith an overall
average across all cohorts of 5 HPO terms/patient. Many research groups
also collected additional phenotype information (e.g., EEGs andMRIs) and
the disease-specific REDCap databases could have hundreds of fields. The
second method of phenotypic data collection is pulling from the electronic

health record (EHR) via Clinithink (www.clinithink.com), a natural lan-
guage processing algorithm. This method resulted in an average of 52 HPO
terms per proband (Fig. 2D). All these data were then collected in a single
central REDCap repository allowing for easy dissemination to various
analysis tools.

Advancing rare disease research
In addition to providing sequencing support for studies that prospectively
enrolled patients under a broad-use research consent, the CRDC has also
supported several projects with the goal of expanding access to sequencing
andother diagnosticmethods.Onemajor armof thiswas providing support
for ES/GS and analysis for patients already enrolled in a different study
under anon-broad-use research consent (i.e., allowingonly formore limited
sharing of data). 1846 patients (2771 individuals) have thus been sequenced
across nine disease cohorts including sickle cell anemia, orphan/ultra-rare
disease, myopathies/dystrophies, neurodevelopmental disorders, and
interstitial cystitis27 (Fig. 4), resulting in over 100 additional diagnoses so far.

The other major arm was supporting pilot projects to investigate and
implement orthogonal experimental methods for identifying the genetic/
genomic basis of a rare disease presentation (Fig. 4). One such project
involved performing RNA-seq on over 400 samples across seven different
cohorts including myopathies, pulmonary disease, severe COVID-19 and
epilepsy. Data analysis is ongoing but already a few solved cases have been
supported by functional information gleaned from the transcriptomic data,
particularly for the COVID-19 and myopathies cohorts, which performed
RNA-seq on related tissues: blood and muscle, respectively. Another
method investigatedwas long-read sequencingwith data generated for over

Table 1 (continued) | Overview of the disease cohorts involved in the CRDC

Department/
Division

Disease cohort Families with genomic
data and consent for
broad-use research

Median age of
patient at
enrollment
(years)a

Percent that
includes both
parents (trio
sequencing)a

Percent of
probands
with GSa

Average
number of
HPO
termsa,b

Overall number of
families with
research
genomic data

Pulmonology Interstitial Lung
Disease

220 10.7 35% 26% 65 220

Bronchiectasis 148 20.7 11% 37% 64 148

Urology Bladder Exstrophy-
Epispadias Complex

87 9.1 41% 21% 45 104

Disorders of Voiding 12 16.5 25% 0% 55 12

Nephrology Nephrotic Syndrome
and Glomerular
Disease

45 9.7 9% 56% 49 251

Urinary Tract Stone
Disease

14 5.4 86% 29% 58 14

Psychiatry Early-Onset Major
Depression

30 13.1 30% 33% 53 30

Early-Onset Psychosis 7 14.6 14% 0% 51 7

Ophthalmology Infantile Esotropia 24 5.0 71% 21% 36 24

Infantile Nystagmus 6 6.3 67% 17% - 6

Newborn Medicine Neonatal Critical
Illness

16 0.2 31% 63% 67 16

Complex Fetal Cases 11 fetal 91% 27% 37 11

Intersectional Congenital Heart
Disease and Autism
Spectrum Disorder

24 11.1 75% 67% 81 24

Anesthesiology Severe Chronic Pain
and Insensitivity
to Pain

22 15.1 68% 9% 52 22

Plastic and Oral
Surgery

Ectodermal Dysplasia
and Cleft Lip or Palate

1 - 0% 0% 119 1

HPO human phenotype ontology, SUDP sudden unexpected death in pediatrics, SIDS sudden infant death syndrome, ADHD attention deficit/hyperactivity disorder,MIS-Cmultisystem inflammatory
syndrome in children.
aData for families sequenced through the CRDC with broad-use research consent.
bIncluded HPO terms collected by researchers and extracted from the electronic health record with Clinithink.
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Fig. 2 | Overview of participants and data included in the CRDC. Overview of
participants and data included in the CRDC. A Distribution of type of sequencing
performed. B Distribution of age at enrollment. C Distribution of sequencing of
parents. For (A–C), the pie chart includes patients for all CRDC-sequenced cohorts
combined and the bar chart includes individual CRDC-sequenced cohorts with at
least 20 patients. D Average number of HPO (Human Phenotype Ontology) terms
collected per patient for individual CRDC-sequenced cohorts with at least 20

patients. Top:HPO terms collectedmanually by research teams. Bottom:HPO terms
extracted from the electronic health record by Clinithink. SUDP sudden unexpected
death in pediatrics, SIDS sudden infant death syndrome, ADHD attention deficit/
hyperactivity disorder, DSD disorders of sex development, MIS-C multisystem
inflammatory syndrome in children, HSP hereditary spastic paraplegia, ASD autism
spectrum disorder, CHD congenital heart defect. This figure was created in R with
ggplot39.
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80 patients from seven cohorts including hearing loss, epilepsy, and
nephrotic syndrome. Preliminary analysis of the data from hearing loss
patients has resulted in three additional pathogenic findings undetectable
with short-read genome sequencing. Other ongoing projects include testing
the utility of single-cell transcriptomics, high-depth exome sequencing for
identifying somatic mutations and proteomics in solving rare diseases.

Anothermajor component of this studywas creating opportunities for
collaboration both within and outside the institution (Table 2). Critical to
thiswas the incorporation of broad sharing for research use into the consent
forms. In addition to the 4653 families sequenced via the CRDC, 1041
additional patients and families received genomic sequencing under a
consent that allowed for such broad sharing of data. The genomic and
phenotypic data for these individuals are available in a de-identified format
for cross-cohort analyses in custom in-house tools including BCH Aggre-
gator and Cohort Family Analysis. BCH Aggregator is an integrated data-
base of sequencing data and clinical phenotypes and has a web portal for
visualization and exploration. This aggregate resource allows users to
investigate howmany individuals have variants at a specific locus of interest,
which phenotypes those individuals have, the name of the investigator who
originally consented the patients and it provides statistics for phenotype-
specific burden tests of variants in genes. The Cohort Family Analysis tool
aggregates candidate variants produced by family-based prioritization tools
across families and cohorts, provides information on variant inheritance,
participant phenotype, consenting investigator, allele frequencies, protein
impact of variation, protein annotations and protein structures, variant
interpretations, splicing, conservation and known gene-disease relation-
ships, and includes various filtering options. Both of these tools facilitate
preparatory-to-research queries and building collaborations.

Many disease group researchers reported multiple and diverse colla-
borations. Internal collaborations have been integral for patient recruitment
as many of the patients fall into multiple disease categories and some of the
disease groups have unique combinations of phenotypes resulting in new
connections between departments in the institution. 624 out of 9797
patients consented to research (6%)are enrolled inmultiple research studies.
Data can also be shared externally including throughGenomic Information
Commons28. Additionally, through the CRDC, BCH has also been estab-
lished as aMatchmaker Exchange (MME)29 node with the ability to submit
data integrated into one of the commonly used analysis tools, an institution-
specific instance of the Broad’s Seqr23.

TheCRDChas also been a critical component of the success of a recent
international collaboration between four leading pediatric hospitals to
investigate the diagnostic and clinical utility of rapid trio GS in infantile
epilepsy30. This study recently published the results of the first 100 infants
enrolled (43% diagnostic rate), 34 (34%) of whomwere enrolled from BCH
and supported by the CRDC. In addition to sequencing support, the BCH
arm of the collaboration was able to rely on the established workflows and
infrastructure to quickly get the study running. Of the published 34 cases,
44% had diagnostic findings, and this study is ongoing with 91 families
enrolled at BCH (Fig. 4). The results from this rapid sequencing study have
driven changes in standards of care such as offering genomic testing to
patients with infantile epilepsy.

Improving clinical care
The genomics analysis platform developed by the CRDC drives a research-
to-clinical loop where research genomic sequencing can have an immediate
impact on clinical care (Fig. 5) because of the built-in framework to clinically

Fig. 3 | Growth of the CRDC since launch. These
plots track the increase in total number of (A)
families receiving genomic sequencing through the
collaborative under a broad-use research consent
and (B) disease cohorts enrolling such families.
Enrollment slowed slightly in the early months of
the COVID-19 pandemic as researchers transi-
tioned to remote consenting and sample collection,
as marked on the plot. This figure was created in R
with ggplot39.
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confirm findings discovered by researchers and the ability for clinically
generated sequencing to be easily re-analyzed or reflexed to research for
further investigation. Primary variant analysis for research sequencing was
performed by the research group that enrolled the participants and varied
depending on the disease, researcher and analysis platform. Generally, fil-
tering was done for population frequency, functional impact and family
inheritance where applicable. Some groups used a gene list to help prioritize

variants but analysis generally went beyond strict filtering on known disease
genes to facilitate novel discoveries. Various annotations and filters are
available via the GeneDx Discovery Platform and BCH Seqr, and AI-
powered variant prioritization is available via Emedgene. Putative causative
variants were then clinically confirmed via validation and classification by
the CLIA-certified testing facility GeneDx and returned via the referring
clinician.

Fig. 4 | Additional projects supported by the CRDC. A number of samples were
included in additional projects performed to increase access to sequencing (ES, GS)
and evaluate orthogonal methods for identifying the genetic basis of a rare disease

presentation: RNA-seq, single-cell RNA-seq (scRNA-seq), long-read genome
sequencing (LR-seq), high-depth exome sequencing to detect somatic mosaic var-
iants (Deep-seq) and proteomics. This figure was created in Microsoft Excel.

Table 2 | Data and analysis platforms available for different types of queries through the CRDC

Type of query Diagnose patients? Explore a
cohort?

Analyze all data? Create a new cohort? Build collaborations?

Analysis
platforms

Family-based analysis
with Gregor (GeneDx DP),
Emedgene, CFA,
BCH Seqr

Cohort-level
analysis with
CFA, SKAT
(GeneDx DP)

Variant summary
information via
BCH Aggregator

Gene phenotype
associations via
BCH Aggregator

Find patients with
specific variants/genes
with CFA, BCH
Aggregator

Share variants and phenotypes
internally and externally with CFA,
BCHAggregator,MME (BCHSeqr)

Broadly sharable
research data
(12,677
individuals)

Broadly available Broadly available Broadly
available

Broadly available Broadly available Broadly available

Restricted
sharing research
data (8813
individuals)

Available only to
contributing researcher

Available only to
contributing
researcher

Broadly
available,
aggregated
onlya

Broadly
available,
aggregated onlya

Via honest brokerb Available to contributing
researcher and via honest brokerb

Non-research
clinical data
(9686 individuals)

Available only to referring
clinician

Not available Broadly
available,
aggregated
onlya

Broadly
available,
aggregated onlya

Via honest brokerb Not available

DP discovery platform, CFA cohort family analysis, BCH Boston Children’s Hospital, SKAT sequence kernel association test, MMEmatchmaker exchange.
aOnly aggregated counts are available broadly; it is not possible to assign a specific variant to a specific individual unlike for broadly sharable data, which does so via de-identified IDs.
bThe CRDC implementation team can connect the querying researcher with the contributing researcher or referring clinician for follow-up and collaboration.
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As of August 2023, 1165 patients enrolled in a CRDC research study
(35% of 3353 cases analyzed at that point) had a genetic finding of interest
including variants of uncertain significance (VUS) andvariants in candidate
disease genes, which were slated for follow-up functional analysis, and
variants that were clinically confirmed (pathogenic, likely pathogenic or
VUS) and returned to the patient’s health record (514 cases, 15% of cases
analyzed). Crucially, the ability to clinically confirm research findings is
made widely available as the samples are stored in a CLIA environment and
the cost of the confirmatory testing by the sequencing lab (GeneDx) is
covered by the CRDC.

Alongside research sequencing, clinical sequencing is also available at
our center with 4032 patients having been tested from late 2019 through
February 2024 (almost all ES with GS only becoming available very
recently). The uptake of clinical exomes for patients seen in the clinic
increased from 24 per month in 2016–2017 to 90 per month in 2021–2023,
mirroring the increase in research genomic sequencing. Since 2019, these
sequencing data have also been made available for analysis in the genomics
platform, supporting re-analysis by clinicians. Additionally, storing the data
in a centralized database makes it available for deeper research investiga-
tions if the individuals are enrolled in a research study (1324 of patientswith
clinical ES are also enrolled in a research study).

To further explore the benefit of accessible research genomic sequen-
cing, a deeper review was performed for four cohorts: epilepsy31 (522
patients), hearing loss32 (218), cerebral palsy33 (175) and peripheral vestibular
disorders (32). For all groups, a fraction of enrolled patients had had non-
diagnostic previous genetic testing: 40% of the cerebral palsy cohort (mix of
CMA and ES), 31% of the hearing loss cohort (mostly panel and single gene
tests), 26% for peripheral vestibular disorders (single gene, panel, andES) and
19% for epilepsy (clinical panel and/or CMA). These cases were included in
the studies as the opportunity to perform ES or GS presented an improve-
ment over the previously available tests, often limited to gene panels orCMA.

Another feature of these cohortswas thatmanyof thepatients included
had phenotypes not classically offered genomic testing such as ES/GS, and
for whom insurance coverage for such testing is not routine. In the epilepsy
cohort, 73% of patients had an epilepsy diagnosis other than developmental
and epileptic encephalopathies (DEE), and had a diagnostic rate of 14%
(compared to 32% for DEE). In hearing loss (HL), 45% of patients had
unilateral or asymmetric bilateral HL, which historically have not been
tested genetically. In this study, 20% of those patients had diagnostic results
(compared to 40% of patients with symmetric bilateral HL). Similarly, for
cerebral palsy (CP), 48% had non-cryptogenic CP (patients with known
acquired risk factors for CP) and a diagnostic rate of 10% compared to the
42% that had cryptogenic CP (with no known risk factors) and a diagnostic
rate of 39%. And for the vestibular disorders cohort, where the contribution

of Mendelian variants is largely unknown, there have been few variants
clinically confirmed and returned so far, but there are a number of ongoing
investigations for this gene discovery-focused study.

Discussion
Genomic sequencing has been established as a critical tool in the diagnosis
of pediatric rare diseases. In this study, we described the results of five
years of the CRDC, including the enrollment and sequencing of 4653
families under a broad-use research consent and from 41 different rare
disease cohorts. 35% of the analyzed cases had findings of interest with
15% clinically confirmed and returned to the family. The rate of clinically
confirmed findings is on the low end of published numbers for rare dis-
eases because of ascertainment bias including enrolling patients with non-
diagnostic genetic test results and presentations with less well-established
genetic etiologies. Even cohorts of the same disease can have different
diagnostic rates due to theunderlying severity andprevious investigations.
As a quaternary referring center, we often see particularly complex cases
that are being evaluated via several different approaches.Generally groups
are not returning secondary findings, although the possibility to do so is
included in the standardized consent form. Depending on the disease and
research group, variant analysis canbe quite broad and secondaryfindings
are not explicitly excluded, allowing for identification if the phenotypes
overlap with the primary indication. The logistics of classifying and
returning secondaryfindings fromresearch sequencing continues to be an
area under development.

The collaborative has expanded greatly since our first report in 202011,
successfully integrating the research and clinical domains, allowing for
research genomic findings to have immediate clinical impact. Research
groups reported that clinically-confirmed diagnoses resulted in a change in
clinical care in up to 25% of cases including changes in treatment, surveil-
lance, change in prognosis and enrollment in a clinical trial. Further, as
expected, investigators reported that a precise genetic diagnosis often clarified
reproductive risk and allowed families to connect with disease-specific
communities for support and information. The availability of research
genomics also broadened the cohort of patients who can access genomic
testing, including thosewithdiseases forwhichaMendelianbasis is still under
evaluation. Thus, research genomic sequencing improves access to testing for
families not historically referred for clinical genomic testing, sharing the
benefits of genomic precision medicine with a larger community. While the
availability of institution-supported research genomic testing helps address
one of the barriers tomore equitable access to sequencing across populations,
many more obstacles need to be overcome as is described in a recent pub-
lication that reviewed racial and ethnic representation in both clinical and
research genomic testing performed at BCH24.

Fig. 5 | The research-to-clinical loop. The research-to-clinical loop involves taking advantage of the benefits and flexibility of research studies to close the gap on unmet
health needs and then evolve the standard of care by bringing the results back to the clinic. This figure was created in Microsoft PowerPoint.
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The CRDCwas established as an internally funded program as part of
the institution’s research strategic plan and the successes to date indicate a
path to sustainability. One example is the cost savings from alignment and
standardization of genetics sequencing programs, which greatly reduces
data duplication and allows for taking advantage of technologies at scale.
Additionally, the data and infrastructure supplied by the CRDC escalates
incoming grant funding providing a return on investment. Finally, the
CRDC and the work of its associated investigators has made BCH a more
specialized and effective rare disease center that, among other benefits, is
opening new pathways to innovation in the therapeutic space.

As diagnostic rates increase and sequencing costs fall, hospitals are
considering scaling up sequencing efforts and associated cost implications
increase from hundreds of samples to thousands or tens of thousands of
samples. Choosing between ES and GS then becomes a complex calculation.
If we estimate GS costs approximately twice as much as ES, then GS would
need to provide twice the number of genetic findings as ES to be financially
efficient, which has not yet been demonstrated. One caveat to that statement
is that anegativeES test often comeswith additional costs as other orthogonal
testing may be ordered. Additionally, there are other considerations when
choosing ES or GS beyond financial cost and diagnostic rate, and these will
vary considerably between patient cohorts. GS can result in increased success
particularly in discovering pathogenic variants that are amenable to current
precision medicine therapeutics that are being developed, for example, anti-
sense oligonucleotides that target deep intronic splice variants only identifi-
able with GS34. In addition, there may be some presentations with a higher
probability of being causedby variants that canonly be foundwithGS such as
repeat expansion diseases. However, broadly offering GS can limit the access
of somepatients to thebenefitsof sequencingas there is generallygoing tobea
cap on the funding available, either from payers and what they are willing to
cover or from research and institutional grants. Using the higher-cost option
reduces the total number of patients that can receive any form of genomic
sequencing, and this is likely toparticularly affect thosepatient groups that are
already less likely to have access.Ultimately, establishing a system for disease-
specific decision-making processes for choosing ES or GS would help influ-
ence policy with insurance/payers.

A major impact of the CRDC has been the acceleration in the use
of genomics in different departments of the hospital. This was done by
supporting early investigators whomay otherwise have had difficulties
setting up cohorts and collaborations, which lowers the barrier of
access to these research opportunities, improves career development
and results in widespread skill improvements of the workforce in
genomics. For instance, CRDC lead investigators include, in addition
to senior investigators with independent research laboratories, junior
to mid-level physician-scientist faculty as well as expert clinicians. For
over half of these faculty, participation in the CRDC represents their
first major study involving genomics. Our approach to data analysis
involved centralized data processing and storage and distributed
variant analysis workflows, which provided a higher baseline level of
data processing and analysis for research cohorts that may not have
their own resources but requires centralized resources to implement.
Investigators still have to supply the workforce required for con-
senting, genetic counseling and result delivery, however, which
remains a limitation.

Having a centralized processing platform allowed for switching to
an updated reference genome and rolling out new variant calling
methods in a systematic and comprehensive manner. The established
infrastructure allowed for the rapid initiation of a pediatric severe
COVID-19 cohort in the early days of the pandemic, facilitating
urgent high-impact research. It has also enabled the swift rollout of a
rapid-turnaround hybrid clinical/research trio GS study for infants
with epilepsy, part of the International Precision Child Health Part-
nership (IPCHiP)30. The data repository combined with including
broad research sharing in the consent forms also facilitated colla-
boration with ~5% of participants enrolled in multiple CRDC-aligned
studies.

The availability of the clinical sequencing data has inspired a push
for developing a workflow for systematic re-analysis at the institutional
level. This would include routine review of all cases, automated where
possible, in order to discover newly reported variants, variants in newly
reported genes, and newly relevant variants/genes due to the evolving
phenotypes of these pediatric patients. This is facilitated by the fact that
the genomic and phenotypic data for five years of patients receiving
clinical genomic sequencing can be found in the centralized platforms
supported by the CRDC.Also required is a workflow for communicating
variants of interest to the referring clinicians and providing access to the
data. There is ongoing work to develop these workflows in an accessible
and efficient manner, using CRDC-supported platforms such as BCH’s
instance of Seqr.

The CRDC is well-poised to continue to adapt new technologies and
methods to improve the process of diagnosing and treating pediatric rare
diseases. In addition to expanding the experimentalmethods supported (e.g.
long-read sequencing andRNA-seq), the collaborativewill continue towork
to expand access to these tools by further streamlining enrollment and
sample collection. Incorporating new methods such as machine learning
algorithms for genomic analysis and patient selection is a potential future
path, as is building a bridge from diagnosis to clinical care and novel ther-
apeutics. Investigators continue to leverage the rich phenotypic and geno-
typic datasets available through this collaborative to improve pediatric
outcomes through research-informed healthcare.

Methods
Boston Children’s Hospital’s CRDC began on October 1, 2018 and is
ongoing. The initial study design and many of the core methods have
been previously published in a manuscript documenting the Pilot
phase and Phase I of the collaborative11. The present report includes
Phase II, which ran from October 1, 2019 through February 28, 2024.
Participant enrollment, sample collection, sequencing, and data
analysis were performed as previously described with a few mod-
ifications. The Boston Children’s Hospital Institutional Review Board
approved all research related to this study, which complied with all
relevant ethical regulations including the Declaration of Helsinki, and
informed consent was obtained from all research participants and/or
their legal guardians. Study data were collected and managed using
REDCap electronic data capture tools hosted at BCH25,26. In March
2022, the CRDC began supporting GS in addition to ES. Similar to ES,
GS was performed by GeneDx (Gaithersburg, MD), a CLIA-certified
testing facility; while sequencing was conducted on a research basis,
additional DNA was stored for possible clinical confirmation. DNA
library preparation was performedwith IlluminaDNAPCR-Free Prep
Tagmentation and followed by 2 × 150 paired-end sequencing on the
Illumina NovaSeq 6000 platform to an average depth of coverage of at
least 40X.

The centralized genomic data analysis platform was also updated in
Phase II. Starting in May 2022, all genomic data were aligned to reference
genome build GRCh38 with the DRAGEN (v3.9) secondary analysis plat-
form from Illumina35. This included re-aligning all historical data sets.
Identificationof the following variant typeswasperformed inPhase II: single
nucleotide variants and small insertions/deletions (SNV/indels; DRAGEN),
CNVs (DRAGEN), SVs (DRAGEN), disease-associated short tandem
repeat expansions (STRs; Expansion Hunter36 via DRAGEN), mitochon-
drial genome variants (Mutect237) and mobile element insertions (MEIs;
xTEA38). Variants were made available to researchers through commercial
and in-house analysis platforms.

Data availability
The data are available internally to all BCH researchers and clinicians
through the genomics analysis platform. To facilitate external access, the
CRDC data has also been made available to the Genomic Information
Commons project (https://www.genomicinformationcommons.org/).
Code available upon request.
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